\(\int \frac {3+x}{\sqrt {1-x^2}} \, dx\) [585]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 18 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=-\sqrt {1-x^2}+3 \arcsin (x) \]

[Out]

3*arcsin(x)-(-x^2+1)^(1/2)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {655, 222} \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=3 \arcsin (x)-\sqrt {1-x^2} \]

[In]

Int[(3 + x)/Sqrt[1 - x^2],x]

[Out]

-Sqrt[1 - x^2] + 3*ArcSin[x]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\sqrt {1-x^2}+3 \int \frac {1}{\sqrt {1-x^2}} \, dx \\ & = -\sqrt {1-x^2}+3 \sin ^{-1}(x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.89 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=-\sqrt {1-x^2}-6 \arctan \left (\frac {\sqrt {1-x^2}}{1+x}\right ) \]

[In]

Integrate[(3 + x)/Sqrt[1 - x^2],x]

[Out]

-Sqrt[1 - x^2] - 6*ArcTan[Sqrt[1 - x^2]/(1 + x)]

Maple [A] (verified)

Time = 2.18 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.94

method result size
default \(3 \arcsin \left (x \right )-\sqrt {-x^{2}+1}\) \(17\)
risch \(\frac {x^{2}-1}{\sqrt {-x^{2}+1}}+3 \arcsin \left (x \right )\) \(21\)
meijerg \(3 \arcsin \left (x \right )-\frac {-2 \sqrt {\pi }+2 \sqrt {\pi }\, \sqrt {-x^{2}+1}}{2 \sqrt {\pi }}\) \(31\)
trager \(-\sqrt {-x^{2}+1}+3 \operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \sqrt {-x^{2}+1}+x \right )\) \(40\)

[In]

int((3+x)/(-x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

3*arcsin(x)-(-x^2+1)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.67 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=-\sqrt {-x^{2} + 1} - 6 \, \arctan \left (\frac {\sqrt {-x^{2} + 1} - 1}{x}\right ) \]

[In]

integrate((3+x)/(-x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-sqrt(-x^2 + 1) - 6*arctan((sqrt(-x^2 + 1) - 1)/x)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.67 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=- \sqrt {1 - x^{2}} + 3 \operatorname {asin}{\left (x \right )} \]

[In]

integrate((3+x)/(-x**2+1)**(1/2),x)

[Out]

-sqrt(1 - x**2) + 3*asin(x)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.89 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=-\sqrt {-x^{2} + 1} + 3 \, \arcsin \left (x\right ) \]

[In]

integrate((3+x)/(-x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-sqrt(-x^2 + 1) + 3*arcsin(x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.89 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=-\sqrt {-x^{2} + 1} + 3 \, \arcsin \left (x\right ) \]

[In]

integrate((3+x)/(-x^2+1)^(1/2),x, algorithm="giac")

[Out]

-sqrt(-x^2 + 1) + 3*arcsin(x)

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 16, normalized size of antiderivative = 0.89 \[ \int \frac {3+x}{\sqrt {1-x^2}} \, dx=3\,\mathrm {asin}\left (x\right )-\sqrt {1-x^2} \]

[In]

int((x + 3)/(1 - x^2)^(1/2),x)

[Out]

3*asin(x) - (1 - x^2)^(1/2)